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Abstract A method is proposed for estimating the surface-layer depth (zs) and the friction
velocity (u∗) as a function of stability (here quantified by the Obukhov length, L) over the
complete range of unstable flow regimes. This method extends that developed previously for
stable conditions by Argaín et al. (Boundary-Layer Meteorol 130:15–28, 2009), but uses a
qualitatively different approach. The method is specifically used to calculate the fractional
speed-up (ΔS) in flow over a ridge, although it is suitable for more general boundary-layer
applications. The behaviour of zs (L) and u∗ (L) as a function of L is indirectly assessed via
calculation of ΔS (L) using the linear model of Hunt et al. (Q J R Meteorol Soc 29:16–26,
1988) and its comparison with the field measurements reported in Coppin et al. (Boundary-
Layer Meteorol 69:173–199, 1994) and with numerical simulations carried out using a non-
linear numerical model, FLEX. The behaviour of ΔS estimated from the linear model is
clearly improved when u∗ is calculated using the method proposed here, confirming the
importance of accounting for the dependences of zs (L) and u∗ (L) on L to better represent
processes in the unstable boundary layer.
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1 Introduction

Fractional speed-up (ΔS) of flow over hills or mountains is defined as the ratio of the speed
perturbation at a given height to the upstream, unperturbed flow speed at the same height. This
quantity is highly relevant both frommeteorological andwind engineering perspectives, since
it characterizes the modulation of the wind speed by orography. Hunt et al. (1988) (hereafter
HLR) developed one of the first theoretical linear atmospheric boundary-layer (ABL)models
of flow over hills, which is one of the simplest and computationally cheapest tools available
for estimating ΔS. However, stratification affects ΔS and must be carefully accounted for
in the evaluation of the scaling parameters that characterize the ABL. Among these, a key
parameter is the friction velocity (u∗), and another is the surface-layer depth (zs), usually
estimated as 5–10% of the ABL depth.

Weng (1997) (hereafter W97), after implementing a continuous wind profile in the HLR
model, found that his predictions of ΔS disagreed significantly with the observations of
Coppin et al. (1994) (hereafter C94). Argaín et al. (2009) (hereafter A09) showed that these
discrepancies were due to the fact that the calculations inW97were carried out assuming that
u∗ is constant, regardless of the different observed stability regimes. They proposed a method
for estimating u∗ in stably-stratified flows, which has led to an improved prediction of ΔS
over two-dimensional (2D) hills. C94 also compared their observations with predictions from
theHLRmodel, and found considerable disagreement, both in stable and unstable conditions.
Here, we show that, as in stably-stratified flows, a decisive reason for such disagreements in
unstable flow is the assumption of constant u∗.

In the present study, a new method is developed for estimating zs and u∗ as a function of
stability (here quantified by the Obukhov length, L) over the complete unstable stratification
range, i.e. from the free-convection to the neutral stability limits. Procedures are developed for
estimating zs in a neutral ABL, and for estimating this and several other scaling parameters,
such as u∗, L and Deardorff’s convective velocity scale, w∗, in the free-convection regime,
which are preliminary steps for defining zs(L) and u∗ (L) for all stabilities. Given that the
physical processes taking place in the convective boundary layer (CBL) and in an unstable
surface layer are substantially different from those in a stable ABL, the method used to
represent them also differs substantially, requiring the use of additional theory.

The main motivation for developing this new method for estimating zs (L) and u∗ (L)

is the calculation of ΔS (L) for unstable flow over hills, although it must be noted that the
method can also be used for more general boundary-layer applications. The calculation of
ΔS (L) requires knowledge of u∗ (L), which, in the method proposed here, also requires
estimating zs (L). The behaviour of zs (L) and u∗ (L) is thus indirectly assessed through
the calculation of ΔS (L) using the HLR model. These predictions are compared with field
measurements reported in C94, and numerical simulations carried out using a 2Dmicroscale–
mesoscale non-hydrostatic model, FLEX. These comparisons allow us to show how zs (L)

and u∗ (L) are sometimes not estimated in a physically consistent way, a limitation that the
present method aims to overcome.

Section 2 presents the method that accounts for unstable stratification in the ABL and its
calibration, while Sect. 3 describes the main results, namely comparisons between theory,
numerical simulations and measurements, using the new unstable ABL formulation. Finally,
Sect. 4 summarizes the main conclusions.
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2 Methodology

2.1 Unstable ABL Model

Several studies show that the ABL, under moderate to strong unstable stratification (usually
known as the CBL), can be represented as a simplified three-layer bulk model (e.g. Garratt
1992). This comprises a thin statically unstable surface layer of depth zs , a well-mixed layer,
of height zi and depth �zi = zi − zs , and a transition layer of thickness �zci , coinciding
with a temperature inversion capping the mixed layer, which inhibits vertical mixing. In the
mixed layer, quantities such as the mean potential temperature (θ) and wind velocity (U, V )
are well-mixed, and therefore constant with height, i.e. θ (z) = constant,U (z) = constant
and V (z) = 0. For our purposes, the strict fulfilment of these profile shapes in the mixed
layer is not critical, since we are essentially interested in the surface layer, for which typically
zs ≈ 0.05zi to 0.1zi (Stull 1988). In the surface layer we assume that the turbulent shear
stresses have a more important effect on the mean flow than does the Coriolis force. Hence,
the Coriolis parameter ( f ) is set to zero, except where otherwise explicitly stated. Since the
surface layer has characteristics that make it markedly different from the mixed layer, zs can
be defined as an important length scale of the ABL, essential for describing the impact of
the orography on the wind profile. This follows McNaughton (2004), who established zs as a
new basis parameter for similarity models of the surface layer. In the method proposed here,
zs is essential for estimating the key velocity scale, u∗, and hence for calculating ΔS (L).

2.2 Surface-Layer Model

According to Monin–Obukhov similarity theory (MOST), in the surface layer the non-
dimensional vertical gradients of U (z) and θ (z) are universal functions of the parameter
z/L , taking the forms

Φm

( z

L

)
= κz

u∗
∂U

∂z
, (1)

and

Φh

( z

L

)
= κz

Prtθ∗
∂θ

∂z
, (2)

where z is the height above the effective ground level, κ is the von Kármán constant, Prt is
the turbulent Prandtl number and θ∗ represents the surface-layer scaling temperature. Here,
u∗ and θ∗ are defined using the vertical eddy kinematic fluxes of momentum and heat at the

surface, i.e. u2∗ = −
(
w′u′

)
0
and θ∗ = −

(
w′θ ′

)
0
/u∗. The length scale L is given by

L = − θ0u3∗/κ

g
(
w′θ ′

)
0

= θ0u2∗
gκθ∗

, (3)

where θ0 is the potential temperature at the surface and g is the acceleration due to gravity.
Wilson (2001) (hereafter W01), after analyzing several forms of the functions Φm and Φh ,
proposed the following general form for the unstable regime (z/L < 0),

Φ =
(
1 + γ

∣∣∣ z
L

∣∣∣
α1

)−α2

, (4)

which is valid for both Φm and Φh . He noted that in order to obtain the correct physical
behaviour for the gradients ∂U/∂z and ∂θ/∂z in the free-convection limit (z/L → −∞), it
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is required that α1α2 = 1/3. For this combination of values (4) behaves in this limit similarly
to ‘classical’ free-convection expressions,with ∂U/∂z and ∂θ/∂z varying as z−4/3.He further
noted that, for this choice of parameters, (1)–(2) may be integrated straightforwardly. Fol-
lowing W01 we use κ = 0.4, Prt = 0.95, γh = 7.86, α1m = α1h = 2/3, α2m = α2h = 1/2
and γm = 3.59.

Subscripted indices s, n and fc hereafter denote values of flow parameters in the surface
layer, in the neutral regime (|L| → ∞), and in the free-convection regime (|L| → 0),
respectively. The method developed here requires that zs f c, u∗ f c, L f c, zsn, u∗n and z0, be
known in order to calculate u∗ (L) and zs (L). The primary input parameters are u∗n, zi f c
and the aerodynamic roughness length, z0, which must be provided initially.

2.3 Estimating Parameters in the Free-Convection and Neutral Regimes

MOSTshowsgoodagreementwith observations in regimeswith sufficiently highwind speeds

(high values of u∗) or under relatively low surface heat flux,
(
w′θ ′

)
0
, where |L| >102 m. This

theory is based on the assumption that, in the surface layer, z and L are the only relevant length
scales. While this assumption is valid for relatively small values of |z/L| (say |z/L| < 0.1),
for larger values, in particular in the free-convection regime, MOST becomes incomplete.
In the perfectly windless regime, purely dominated by thermal effects, both the mean wind
speed and u∗ approach zero, andMOSTproduces singularities and underestimates the surface
fluxes. However, perfectly windless conditions occur very rarely, and the theory can still be
applied, if conjugated with CBL theory, for low but non-zero wind speeds, as will be shown
below.

For the highly convective ABL, Deardorff (1970) suggested the following convective
velocity scale

w∗ =
[
g

θ0

(
w′θ ′

)
0
zi f c

]1/3
. (5)

The combination of MOST and Deardorff similarity theory, adopted here, provides a model
that is consistent throughout the whole CBL (Kaimal et al. 1976) (hereafter K76), and for
stabilities ranging from the neutral regime to the free-convection regime. This latter regime
does not strictly correspond to L = 0, but rather to a minimum, suitably small, value of
L = L f c to be determined. In the free-convection regime we need to estimate zs f c, u∗ f c,
and L f c, and given that u∗ f c is defined in relation tow∗ (as shown below), this latter quantity,
defined by (5), must also be related to the known input parameters. This requires a total of
four equations (see below).

Many observations have confirmed that the transition from the shear-driven turbulent
regime of the surface layer to the buoyancy-driven regime of the mixed layer usually occurs
at a height of order |L|. Hence, in a highly convective ABL (Garratt 1992),

zs f c = c f c
∣∣L f c

∣∣ , (6)

where c f c = 2, and Eq. 6 is adopted hereafter in the free-convection regime.
Based on observations, Schumann (1988) (hereafter S88) assumed that zs/zi = 0.1. As

will be seen later, this assumption is too restrictive over the whole stability interval, since
zi is expected to increase and zs to decrease as the stratification becomes more unstable. A
more general definition of zs is thus required, to be developed in Sect. 2.4.
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Businger (1973) proposed the idea that u∗ does not vanish at lowwind speeds, introducing
the concept of a ‘minimum friction velocity’, valid in the free-convection regime (u∗min =
u∗fc). Combining (3) and (5) in this regime, we obtain

κ
∣∣L f c

∣∣
zi f c

=
(
u∗ f c

w∗

)3

, (7)

and using (6), it can be easily shown from (7) that zsfc/zifc decreases as u∗ f c/w∗ decreases,
which is physically plausible.

Various authors, such as S88 and Sykes et al. (1993) (hereafter S93), have advocated
the view that u∗ f c/w∗ is a function of zsfc/z0 or zifc/z0 as well. Following the less general
relations derived by S88 and S93, valid only for limited intervals of z0, Zilitinkevich et al.
(2006) (hereafter Z06) suggested a more complete formulation for the relationship between
u∗ f c/w∗ and zifc/z0, which takes into account the combined effects of buoyancy and shear
forces,

u∗ f c

w∗
= c1

[
ln

zifc/z0(
ln zifc/z0 − c0

)3 + c2

]−1

for ≥ σ, (8)

u∗ f c

w∗
= c3

[
z0
zifc

+ c4

(
z0
zifc

)8/7
]1/6

for < σ, (9)

where σ = 3.45 × 105, u∗ f c/w∗ (σ ) = 0.065, c0 = 6.00, c1 = 0.29, c2 = −2.56, c3 =
0.54 and c4 = 0.3. Equations 8 and 9 agree very well with both LES and field data in the
free-convection regime (Z06), and incorporate the best characteristics of the S88 and S93
models.

The height zi characterizes the PBL in a fairly integrated manner, being closely related

to fundamental quantities such as
(
w′θ ′

)
0
. For this reason, as a first approach, we suggest

estimating surface-layer scaling parameters in the free-convection regime based on a known
value of zifc. This allows obtaining u∗ f c/w∗ directly from (8)–(9), since z0 is also assumed
to be known.

Our final constraint is based on Venkatram (1978) who, by using a simple mixed-layer
model for the CBL, derived the following relationship between w∗ and zifc,

w∗ = c5zifc, (10)

where c5 = 1.12 × 10−3 s−1. Equation 10 compares extremely well with observations (see
“Appendix 2”), and using the available value of zi f c, (10) allows us to determine w∗ directly.

Equations 6–10 may thus be used to obtain the surface-layer parameters in the free-
convection regime, as follows. Given zifc and z0, (8) or (9) is used to obtain u∗ f c/w∗ and
(10) is used to obtain w∗, which yields u∗ f c. Given zifc, w∗ and u∗fc, determined in the
preceding step, (7) is used to obtain Lfc. Finally, L f c is inserted into (6) to obtain zsfc,
yielding u∗fc, Lfc, and zsfc, as required. Several different procedures analogous to that just
described would be possible, depending on the input parameters known initially.

According to MOST, in the neutral regime

Un(z) = u∗n
κ

ln

(
z

z0

)
. (11)
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Since, from (6), zs is expected to depend on L , in the neutral regime at least (where no
stability effects exist), it seems reasonable to assume zs to be a fixed fraction of zi (Stull
1988),

zsn = cSLzin, (12)

where that fraction is conventionally defined as 5–10% of zi (Stull 1988). In our model, we
assume cSL = 0.05 (following Stull 2011). Here, and unlike the practise of previous authors,
(12) is adopted only for the strictly neutral regime. As will be seen later (Sect. 3.2), (12)
holds approximately for a weakly unstable ABL, but not for a strongly unstable ABL. In
order to obtain zsn from (12), it is still necessary to estimate zin. This can be done using the
expression of Rossby and Montgomery (1935),

zin = czinu∗n
| f | , (13)

where czin = 0.2 (Garratt 1992).

2.4 Estimating zs and u∗ for Arbitrary L< 0

The preceding section described themethodologies for estimating all the parameters required
for defining u∗ and zs in the free-convection and neutral regimes. Next we explain the
approach used to estimate these two parameters for arbitrary L<0.

Since |L| is the height at which the buoyant production of turbulence kinetic energy
(TKE, or E) begins to dominate over shear production, the greater is (w′θ ′)0 (i.e. the smaller
is |L|), the bigger is�zi and the smaller zs becomes, because convectively-driven turbulence
increasingly dominates over shear-driven turbulence. So, there is a clear relationship between
zs and |L| [expressed by (6) in the strongly unstable regime]. However, for intermediate
unstable regimes the dependence zs(L) is not known.

Based on the ABL model described in Sect. 2.1, we define zs as the height at which the
vertical derivative of θ(z) reaches a small prescribed fraction of its surface value. Using this
property, in the present model zs(L) is determined by (see details in “Appendix 1”) evaluating
the root of,

zs
z0θ

= 1

αΨ 2

(
z0θ
zs

)−αΨ 1
[
1 + γh (zs/ |L|)α1
1 + γh (z0θ / |L|)α1

]−α2

, (14)

for any value of L , assuming that z0θ , α1, α2, γh, αΨ 1 and αΨ 2 are provided. As (14) includes
the influence on zs(L) of parameters in both extremes of the stability interval (see “Appendix
1”), it is expected to provide a good approximation over the whole stability range. As the
roughness length for heat, z0θ , is not provided by C94, we use here z0 instead. Calculations
not presented here show that the zs(L) dependences obtained using zoθ /zs or zo/zs are quite
similar (the relation between zoθ and zo assumed for this comparison follows Zilitinkevich
1995). Although zoθ and zo differ, the proposed method for estimating zs is not very sensitive
to the exact value of zo so long as this is small; u∗(L), on the other hand, is calculated from

u∗(zs, L) = κzs

[
1 + γm

(
zs
|L|

)α1
]α2 (

∂U

∂z

)

Zs

, (15)

where, in accordance with the slab model adopted initially (see Sect. 2.1), it is expected
that ∂U/∂z becomes small as z → zs . Here we assume that in (15) the shear (∂U/∂z)zs is
constant, and, for convenience, equal to its neutral value. For |L| → ∞ and at z = zs , (1)
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reduces to (∂U/∂z)zsn = u∗n/(κzsn), in accordance with (11), where zsn may be obtained
from (12). The validity of the assumption (∂U/∂z)zs = constant is tested in “Appendix 2”.

All quantities on the right-hand side of (15) are now known, and hence u∗(zs, L) may
be determined in general. Finally, the U (z) profile for the general unstably–stratified case,
which will be used in the HLR model for calculating ΔS(L),

U (z) = u∗
κ

⎧⎨
⎩ln

(
z

z0

)
− 3 ln

⎡
⎣ 1 +

√
1 + γm (z/ |L|)2/3

1 +
√
1 + γm (z0/ |L|)2/3

⎤
⎦

⎫⎬
⎭ , (16)

is obtained by integration of (1), using the velocity gradient expressed by (4) (see W01).
In the above treatment, it is assumed that the synoptic situation does not vary too rapidly

comparedwith the time scales of flow over the ridge. Hence, according toMOST, the effect of
L in the surface layer is dominant. As this quasi-steadiness is supported by the C94 campaign,
the C94 observations can safely be used for testing the proposed method. For more unsteady
flows, it is likely necessary to use a time-dependent model for the whole ABL, such as
that described by Weng and Taylor (2003), for providing upstream profiles U (z) and θ(z)
at different values of L . However, this approach would require more input parameters not
available in the C94 observations, and their estimation would further increase the empiricism
of the proposed method.

Summarizing, in this section, assuming that z0, zsfc, Lfc, zsn and u∗n are known, we pro-
pose (14) and (15) for determining zs(L) and u∗ (L), respectively; u∗ (L) is then used in the
HLR model to calculate ΔS (L) for flow over orography.

3 Results and Discussion

The method presented above is assessed using the observations of C94. These measurements
were conducted during the spring 1984 and summer 1985, over Cooper’s Ridge, located to the
north–west of Goulburn, in New South Wales, Australia. This is a somewhat isolated north–
south oriented, quasi-two-dimensional ridge of uniform low z0, located along a valley that
forces flow over the hill predominantly from the west side. The windward slope of the ridge
(west side) can be well fitted using a simple bell-shaped profile h (x) = h0/

{
1 + (x/a)2

}
(with h0 = 115 m and a = 400 m), while the lee side of the ridge falls away to about 0.5h0
before rising to another broader ridge.

3.1 Estimation of Parameter Values From the Data

As mentioned in Sect. 2, for determining zs(L) and u∗ (L), the method developed here
requires that z0, zsfc, u∗fc, Lfc, zsn and u∗n be known. From the data collected by C94, we
have u∗n = 0.35 m s−1, z0 = 0.05 m and f ≈ 9 × 10−5 s−1. Using (13) we thus obtain
zin = 778 m. Using this value in (12) yields zsn = 39 m.

The methodology described in Sect. 2.3 for estimating the flow parameters in the free-
convection regime (zsfc, u∗fc, Lfc and w∗) is now applied. As zifc is not supplied by C94,
we use a typical value corresponding to the season and latitude of the region where the
observations were taken. Figures containing the necessary information from the ERA-40
Reanalysis provided by Von Engeln and Teixeira (2013) suggest zifc = 1550 m. Next, since
zifc/z0 = 3 × 104 < σ = 3.45 × 105, we must use (9) to calculate u∗fc/w∗ = 0.098.
Substituting u∗fc/w∗ and zifc into (7), we obtain Lfc = −3.6 m, and from (6) we obtain
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Table 1 Parameters of the ABL in the free-convection regime

Source u∗ f c (m s−1) |L f c| (m) zs f c (m) zi f c (m) zs f c/zi f c w∗ (m s−1) u∗ f c/w∗

Present method 0.17 3.6 7.2 1550 0.005 1.70 0.098

Run 6A1 0.24 5.7 10.4 2095 0.005 2.43 0.099

Run 6A2 0.23 6.4 12.8 2035 0.006 2.21 0.104

Line 1: parameters used in the present method. Lines 2–3: similar parameters from runs 6A1 and 6A2 of the
experiment described in Kaimal et al. (1976). The value of zs f c for these runs was obtained from (6)

zsfc = 7.2 m. Next, substitution of zifc in (10) gives w∗ = 1.74 m s−1, which in turn can
be used for calculating u∗fc from u∗fc/w∗ = 0.098, yielding u∗fc = 0.17 m s−1. Table 1
presents known and estimated parameters of the ABL in the free-convection regime, obtained
by the present method and, for comparison, observations from runs 6A1 and 6A2 of the field
experiment reported by K76, corresponding to a highly convective ABL. As can be seen, the
method proposed here seems to predict realistic results.

It is interesting that, in contrast to what happens in the neutral regime, the ratio zs f c/zi f c =
0.005 estimated above is significantly lower than the value assumed in (12). This value is
of the same order of magnitude as values derived from the measurements of K76, taken in
strongly convective conditions (see Table 1). As pointed out before, the smaller is |L|, the
more intense the turbulent mixing by large convective eddies in the mixed layer becomes,
thereby reducing zs . This corroborates, using real data, that the neutral approximation for
zsn/zin cannot be considered realistic over the whole range of variation of L , particularly
near the free-convection regime.

3.2 Behaviour of zs as a Function of L

For a better understanding of the surface-layer structure, it is useful to define a transition
height, ztr , at which the convective contribution toU (z) is as important as that of the neutral
logarithmic law. Following Kader and Yaglom (1990), from the W01 formulation (4) we can
define

ztr = |L| γ −1/α1
m . (17)

It is expected that, in moderately to strongly unstable flow regimes ztr < zs , i.e. at the top of
the surface layerU (z) is no longer logarithmic (in fact, this generally happens in non-neutral
conditions).

Figure 1 presents the variation of zs and ztr , with |L|, normalized by zsn , where the solid
line represents zs (L), computed using (14). In (14), the coefficients αΨ 1 and αΨ 2, given by
(23), take the values 0.415 and 0.018, respectively. ztr (L) (dashed line) is computed using
(17).

The dotted vertical lines correspond to
∣∣L f c

∣∣ = 3.6 m (left) as determined previously (see
Table 1), and the value of |Ltr | = 120 m (right) for which zs(L) = ztr (L), i.e. for which the
logarithmic and convective contributions to U (z) are equally important. For |L| > 400 m,
the logarithmic portion of U (z) is overwhelmingly dominant compared to the convective
one, and therefore it can be considered that the ABL is in near-neutral conditions. For L =
L f c or lower, the opposite is true, as the flow is close to free-convection conditions; zs(L)

physically behaves as expected, tending asymptotically to constant values at each extreme of
the stability interval (4.5m as |L| → 0, and zsn for |L| → ∞). Figure 1 illustrates the way
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Fig. 1 Surface-layer height, zs , and transition height, ztr , as a function of |L|, normalized by the surface-layer
height for a neutral ABL, zsn . Solid line: zs (L) obtained from (14), dashed line: ztr (L) obtained from (17).
Vertical dotted lines:

∣∣L f c
∣∣ = 3.6 m (left), and |Ltr | = 120 m (right). zs (L) asymptotically approaches the

constant values zsn as |L| → ∞ and zs (L) = 4.5 m as |L| → 0. zs
(
L f c

) = zs f c = 7.2 m (see Table 1)

in which the surface-layer depth decreases with increasing unstable stratification, because of
the progressively higher buoyant production of TKE in the mixed layer as |L| decreases.
3.3 Behaviour of u∗ as a Function of L

Figure 2 presents u∗ as a function of |L|, normalized by u∗n . The solid line corresponds to
u∗ (L) computed from (15), and the dash-dotted line extends the constant neutral value, u∗n =
0.35 m s−1, over the whole stability interval, for comparison. Figure 2 shows that u∗ (L)

decreases with decreasing |L| until it reaches its minimum value (u∗min) at L = |Lmin |.
According to (15), for |L|< |Lmin |, u∗ (L) would increase monotonically with decreasing
|L|, in such away that u∗ (L) → ∞ for |L| → 0. This behaviour occurs because, as |L| → 0,
the termbetween brackets on the right-hand side of (15) tends to infinity. This is a consequence
of the physically unrealistic behaviour of MOST as |L| → 0, producing singularities. For
this reason, in Fig. 2 we have assumed that u∗ (L) = u∗min , for |L| ≤ |Lmin |.

As can be seen in Fig. 2, u∗ (L) shows the expected physical behaviour (cf. Fig. 3.7
of Garratt 1992), approaching asymptotically (by design) u∗n as |L| → ∞, and decreasing
monotonicallywith decreasing |L|. However, the approach to u∗n as |L| → ∞ is very gradual
and u∗ only takes a value mid-way between the neutral and free-convection limits for a value
of |L| of several hundred metres. Furthermore, the minimum value reached by u∗ (L) is
u∗min = 0.17 m s−1 for Lmin = 3.4 m; thus, u∗min = u∗ f c and |Lmin | almost coincides
with

∣∣L f c
∣∣ = 3.6 m, determined previously (see Table 1). This result further confirms that

the assumption of constant (∂U/∂z)zs is realistic, and allows reliable estimates of u∗ to be
obtained over the whole stability interval.

Although u∗ f c, is thus aminimumvalue of u∗, it is generally not as low comparedwith u∗n
asmight be expected. The case under consideration here, where u∗ f c/u∗n ≈ 0.5, which is not
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Fig. 2 Friction velocity (u∗) as a function of |L|, obtained from (15) (solid line) and constant u∗ independent
of the stability and equal to its value in the neutral regime (u∗n = 0.35 m s−1) (dash-dotted line). Both
quantities are normalized by u∗n . The vertical dotted line indicates the value of L in the free-convection
regime,

∣∣L f c
∣∣ = 3.6 m (see Table 1)

particularly low (see Sect. 3.1, Table 1), is a good example. This result ultimately suggests
that a purely thermal regime is unlikely (it was not realized in the C94 measurements, in
particular). For these reasons, under nearly free-convective conditions both u∗ f c and L f c

differ substantially from zero, as is confirmed by the observations of K76 (see Table 2), and
further corroborated for a very unstable surface-layer case by Steeneveld et al. (2005). This
is what allows MOST to be used here for describing a highly convective ABL.

3.4 Flow Speed-Up Calculation

Since calculating ΔS (L) using the HLR model requires knowledge of u∗ (L), the main
purpose of this section is to use the behaviour ofΔS(L) predicted by that model to indirectly
assess the dependence on stability of u∗(L) [and also of zs(L)] established in the method
proposed here, by comparison with values of ΔS measured over a wide range of L by C94,
and simulated numerically using the FLEX model.

Suppose that at a hilly location ΔS (L) needs to be estimated, assuming that the only
available parameters are z0 and the mean wind speed, U (z), measured at a suitably low
height such that, according to MOST, (11) is approximately valid for any L . Equation 11
can then be used for estimating u∗n . Once z0 and u∗n are known, the present method allows
zs(L), then u∗(L) and finally ΔS (L), for the whole unstable stratification parameter range,
to be systematically obtained.

In the specific case under consideration here, first using as input parameters u∗n =
0.35 m s−1 and z0 = 0.05 m (from C94), u∗ (L) is calculated using the proposed method.
Next, this u∗ (L) is used in the HLR model applied to flow over Cooper’s ridge to calculate
ΔS(L); ΔS(L) is also calculated assuming that u∗ = constant = u∗n , regardless of the
observed L . This simpler choice, often used for estimating ΔS(L) in flow over orography
(e.g. W97), is what the present approach aims to improve. Finally, the ΔS values are com-
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Fig. 3 Variation of the fractional speed-up (ΔS) as a function of stability, above the hill crest, at the heights
z = 8 m (top) and z = 16 m (bottom). Solid line: u∗ computed using (15); dotted line: u∗ kept constant,
regardless of the stability, and equal to the neutral ABL value (u∗n = 0.35 m s−1); dash-dotted line: FLEX
model; symbols: observations from C94

pared, for a range of L , using the HLR model results, the C94 measurements, and the FLEX
model results.

For the sake of simplicity the HLR and FLEX models are not described in detail here;
a brief description of the HLR model can be found in W97 or A09. The FLEX model is
a microscale–mesoscale, non-linear and non-hydrostatic model, developed and validated
against experimental and field data by Argaín (2003) and A09. This model has been tested
and used extensively, namely by Teixeira et al. (2012, 2013a, b) for assessing analytical
mountain-wave-drag predictions in 2D flows by comparison with numerical simulations.

All the numerical simulations presented here used a main grid of 160 × 364 points for
a domain of 8000 m × 2000 m size. The horizontal domain extent is 20a (7a upstream of
the ridge maximum and 13a downstream), and from z = 40 m downward the level of grid
refinement is gradually increased, and the lowest level is at a similar distance to the surface

as the observations ( ≈ 0.15 m). At the surface a no-slip condition is used, and
(
w′θ ′

)
0

and other turbulent quantities (turbulent kinetic energy, E , and rate of TKE dissipation ε),
are specified for each L , by assuming that viscous dissipation balances shear and buoyancy
production. At the upper boundary, constant U and θ are prescribed, and the derivatives of
E and ε are set to zero.

Observations, and both theoretical and numerical predictions of ΔS as a function of |L|,
are shown in Fig. 3, for z = 8 m and z = 16 m. The HLR model is applied in two cases: a)
u∗ = u∗n , regardless of |L| (dashed line), and b) the friction velocity is calculated for each
|L|, using the method proposed here (15) (solid line).

The significant differences between the ΔS curves, obtained using the two different def-
initions of u∗, reveals that ΔS is very sensitive to the dependence of u∗ on |L|, as shown
by A09 for the stable case. The results assuming u∗ = u∗n (dashed lines) overestimate the
observations considerably. In both panels of Fig. 3, the improvement in the performance of
the theoretical model, owing to the new method of calculating u∗ (solid lines), is significant
over the whole stability interval. In general, this new method produces results much closer to
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Fig. 4 Profiles of the fractional speed-up ratio (ΔS) above the hill crest, for |L| = 33 m (left) and |L| = 222 m
(right). Solid line: u∗ computed using (15); dashed line: u∗ kept constant at u∗n = 0.35 m s−1; dash-dotted
line: FLEX model; symbols: observations from C94

both the field measurements (despite the considerable scatter in the data) and the numerical
simulation results. ΔS calculated from the theoretical model with u∗ depending on L has a
rather flat variation with |L|, especially at z = 16 m, and although decreasing more substan-
tially with |L| at z = 8 m, slightly overestimates both the measurements and the numerical
simulations for the lowest values of |L|.

Profiles of observations (C94), and both theoretical and numerical predictions of ΔS
directly above the hill crest, for |L| = 33 m (left panel) and |L| = 222 m (right panel), are
shown in Fig. 4; |L| = 33 m and |L| = 222 m correspond to strong and moderately weak
unstable stratification, respectively. In both cases, the proposedmethod gives improved results
both in comparison with the numerical model and with the field data, although it slightly
overestimates the observations in the more unstable case. Nevertheless, a general decrease
of ΔS as one shifts from the higher to the lower |L| value is qualitatively reproduced. Given
the precision of the measurements and flow assumptions, not too much importance should be
attached to this overestimate, which also occurs in the numerical simulations (consistently,
a similar discrepancy can be detected for the theoretical model on the far left of Fig. 3 at
z = 8 m).

ΔS is much more severely overestimated, in both cases, by the profiles with a prescribed
constant u∗ = u∗n , due essentially to the significant fractional deviation between u∗n and the
more accurate value of u∗ determined from (15). This fractional deviation amounts to ≈45%
for |L| = 33 m and to ≈ 35% for |L| = 222 m (see Fig. 2), but this does not translate into
proportional deviations forΔS, as the value ofΔS, where u∗ is calculated from (15), actually
becomes closer to that where u∗ = u∗n as |L| decreases (see Fig. 3). The fact that there is
such a large difference in the results using u∗ (L) and u∗ = u∗n for the weakly unstable case
might seem suspect, but Fig. 2 explains it, since for |L| = 222 m, u∗ (L) still differs very
substantially from u∗n .

It should be pointed out that, at the lowest measurement level, ΔS should depend very
weakly on L , because near enough to the ground the flow is always approximately neutral.
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The overestimate of the measured ΔS at that level by the theoretical model for |L| = 222 m
can probably be attributed to an inherent bias of the HLR model solution, noted by W97 and
A09.

4 Summary and Conclusions

We have proposed a new method for estimating two scaling parameters of the ABL: the
surface-layer height zs and the friction velocity u∗, as a function of stability (quantified by
the Obukhov length scale L), for an unstable ABL. These two parameters are important for
characterizing the unstable ABL, in particular its coupling with the overlying convective
mixed layer. Moreover, a correct estimation of u∗, whose dependence on L is often not
accounted for in a physically consistent way, is crucial for producing accurate predictions
of the speed-up (ΔS) in flow over hills, which is relevant for a number of engineering
applications.

Using a physical approach that is developed specifically for unstable conditions, via a
combination of MOST and convective mixed-layer scaling, our model takes into account
the fact that zs decreases as the unstable stratification becomes stronger, due to erosion of
the surface-layer eddies by more energetic buoyancy-dominated eddies from the convective
mixed layer. Themodel also takes into account the fact that u∗ decreases as the ABL becomes
more unstable, attaining a minimum value, but does not, in general, approach zero in the
free-convection limit, unless the wind vanishes completely (in which case the concept of ΔS
loses its meaning). The variation of u∗ affects the turbulent fluxes of various properties, and
consequently the mean profiles of those properties, including the wind speed U (z), which
determines the behaviour of ΔS.

Procedures to obtain boundary-layer parameters in the neutral and free-convection
regimes, and for bridging across these regimes to cover the complete unstable ABL param-
eter range, were developed and tested using available field data. The performance of the
model was then evaluated more comprehensively, by comparing predictions of ΔS in
unstable conditions, using the linear model of HLR incorporating the new friction veloc-
ity formulation, against measurements from C94, and numerical simulations of the FLEX
mesoscale–microscale model. Agreement was found to be substantially improved relative
to results where u∗ is held constant. This emphasizes the importance of accounting for the
full dynamics of the unstable ABL, including the variation of u∗ and zs with stability, for
correctly estimating ΔS. The proposed method, whose possible applications are not limited
to improving the calculation of ΔS, should be seen as a preliminary step in the development
of better tools for the parametrization of the unstable ABL. Further validation of this method
by comparison with observations remains necessary.
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Appendix 1: Accuracy of the (∂θ/∂ z)zs = constant Approximation

In the present model, the form of zs(L) is established using the temperature gradient ∂θ/∂z,
which can be obtained from (2) and (4), yielding
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∂θ

∂z
= θ

′
∗
[
1 + γh

(
z

|L|
)α1

]−α2

z−1, (18)

where θ ′∗ = Prtθ∗/κ . According to (18), ∂θ/∂z → 0 as z → ∞. This is consistent with the
assumption that θ = constant in the mixed layer, so at z = zs the derivative (∂θ/∂z)zs should
be suitably small, and this smallness is exploited to obtain zs . Note that a similar condition
could be based on the mean velocity gradient (1), but we think that θ = constant is more
reliable in the mixed layer, since U (z) profiles may exhibit non-negligible shear above the
surface layer, due to variation of the pressure perturbation induced by the orography with
height or the Coriolis force. Taking this into account, the ratio

Ψ (zs, L) = (∂θ/∂z)zs
(∂θ/∂z)z0θ

=
[
1 + γh (zs/ |L|)α1
1 + γh (z0θ / |L|)α1

]−α2
z0θ
zs

, (19)

implicitly determines zs(L), if the form of the function Ψ (zs, L) is known. In (19)
(∂θ/∂z)zs and (∂θ/∂z)z0θ are obtained by evaluating (18) at zs and the thermal rough-
ness length, z0θ , respectively. As defined by (19), Ψ (zs, L) varies monotonically from 1
to zero as z0θ /zs decreases. Moreover, Ψ (zs, L) depends only weakly on L: by substituting
L f c, zs f c, zsn and Ln = ∞ (see Sect. 3.1, Table 1) into (19) we may calculate the ratio
Γ = Ψ (zsn, L → −∞) /Ψ

(
zs f c, L f c

) ≈ 0.6, which is ≈ 1.
The limits ofΨ (zs, L) at the theoretical extremes of the stability interval are, respectively,

Ψs f c = Ψ
(
zs f c, L → 0

) = lim|L|→0
Ψ (L) =

(
z0θ
zs f c

)α1α2+1

, (20)

Ψsn = Ψ (zsn, L → ∞) = lim|L|→∞ Ψ (L) = z0θ
zsn

. (21)

For both strongly and weakly unstable flows, (20)–(21) suggest that ψ (zs, L) ∝ (z0θ /zs)α ,
where α is a dimensionless constant. Taking this result into account, we hypothesize that this
form holds for the whole stability interval, yielding the following approximate definition for
ψ (zs, L),

Ψ (zs, L) = αΨ 2

(
z0θ
zs

)αΨ 1

, (22)

where αΨ1 and αΨ2 are dimensionless constants. These two constants can be determined by
taking the limits of (22) in the free-convection and neutral regimes, and comparing the corre-
sponding expressions with (20) and (21), respectively. This produces a set of two equations,
which may be solved for αΨ1 and αΨ2 , yielding

αΨ 1 = ln

[
Ψ (zsn, L → ∞)

Ψ (zs f c, L f c)

]/
ln

(
zs f c
zsn

)
αΨ 2 = Ψ (zs f c, L f c)

(
z0θ
zs f c

)−αΨ 1

(23)

By combining (19) and (22), (14) is obtained.

Appendix 2: Accuracy of the (∂U/∂ z)zs = constant Approximation

Here we show that the approximation (∂U/∂z)zs = constant, used in Sect. 2.4 for evaluating
u∗, is supported by measurements. Let us consider the following ratio, by using MOST,
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Table 2 CBL parameters measured by Kaimal et al. (1976)

Run u∗ f c (m s−1)
∣∣L f c

∣∣ (m) zi f c (m) w∗ (m s−1) w∗/zifc (s−1) βMOST

6A1 0.24 5.7 2095 2.43 1.16 × 10−3 1.1

6A2 0.23 6.4 2035 2.21 1.09 × 10−3 1.3

Columns 6 and 7 show, respectively, w∗/zi f c , and βMOST , calculated from the data [the second quantity by
using (24)]

βMOST = (∂U/∂z)zsn
(∂U/∂z)zs f c

=
(
c f cβ1| f |
cSLczin

)

︸ ︷︷ ︸
α5

∣∣L f c
∣∣

u∗ f c
, (24)

where β1 =
(
1 + γmc

α1
f c

)α2
, and obtained by combining (1), (4), (6), (12) and (13). Using

parameters from C94 (see Sect. 3.1) we obtain α5 = 0.0466 s−1; for the values of L f c and
u∗ f c shown in Table 1, this yields βMOST = 0.99. The remarkable closeness of this value to
1 is fortuitous, although it obviously depends on the values adopted for czin, cfc and cSL . For
checking further the approximation βMOST ≈ 1 we use the K76 observations (keeping the
same α5), which were carried out in a daytime well-mixed CBL, with evidence of significant
heat and momentum entrainment through the capping inversion.

Table 2 shows CBL parameters obtained by K76, corresponding to the runs with the
smallest values of |L|, typical of nearly free-convection regimes. As can be seen, the values
of βMOST are close to 1, corroborating the hypothesis βMOST ≈ 1. Moreover, column 6
supports (10) proposed by Venkatram (1978), since c5 = w∗/zi f c varies within a narrow
range. Venkatram (1978) estimated c5 = 1.12×10−3 s−1, which is quite close to both values
shown in Table 2. Therefore, the assumption that c5 is a constant is plausible.

If the assumption βMOST = 1 is accepted, (24) defines a relationship between α5,
∣∣L f c

∣∣
and u∗ f c, and if parameters c f c and czin are assumed to be non-adjustable, this is equivalent
to a relation between

∣∣L f c
∣∣, u∗ f c and cSL . Equation 13 is only applicable if |L| → ∞ (a

rarely observed situation), so the parameter czin may have a considerable uncertainty. Garratt
(1992) and Zilitinkevich et al. (2012) discuss this topic at length. It would be interesting
to explore the constraint defined by (24) further to develop relations other than (13) for
estimating zin , but that is beyond the scope of the present study.

We also carried out a similar analysis using the classical free-convection formulation of
Prandtl (1932) for the mean velocity gradient,

(
∂U

∂z

)

zs f c

= cuu∗ f c(κ|L f c|)1/3
z4/3s f c

= cuκ1/3

c4/3f c

u∗ f c

|L f c| , (25)

where cu = 1.7. In this casewe obtain a ratio (∂U/∂z)zs f c/(∂U/∂z)zsn with a similar parame-

ter dependence as (24) andα5 = 0.0453s−1. The proximity between the values ofα5 obtained
using both formulations for (∂U/∂z)zs f c confirms that the MOST formulation adopted here
is physically consistent, hence it may be used to describe the free-convection regime.
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